2 research outputs found

    Intelligent Agricultural Machinery Using Deep Learning

    Full text link
    Artificial intelligence, deep learning, big data, self-driving cars, these are words that have become familiar to most people and have captured the imagination of the public and have brought hopes as well as fears. We have been told that artificial intelligence will be a major part of our lives, and almost all of us witness this when decisions made by algorithms show us commercial advertisements that specifically target our interests while using the web. In this paper, the conversation around artificial intelligence focuses on a particular application, agricultural machinery, but offers enough content so that the reader can have a very good idea on how to consider this technology for not only other agricultural applications such as sorting and grading produce, but also other areas in which this technology can be a part of a system that includes sensors, hardware and software that can make accurate decisions. Narrowing the application and also focusing on one specific artificial intelligence approach, that of deep learning, allow us to illustrate from start to end the steps that are usually considered and elaborate on recent developments on artificial intelligence

    Real-Time Sensory Information for Remote Supervision of Autonomous Agricultural Machines

    Get PDF
    The concept of the driverless tractor has been discussed in the scientific literature for decades and several tractor manufacturers now have prototypes being field-tested. Although farmers will not be required to be physically present on these machines, it is envisioned that they will remain a part of the human-automation system. The overall efficiency and safety to be attained by autonomous agricultural machines (AAMs) will be correlated with the effectiveness of information sharing between the AAM and the farmer through what might be aptly called an automation interface. In this supervisory scenario, the farmer would be able to both receive status information and send instructions. In essence, supervisory control of an AAM is similar to the current scenario where farmers physically present on their machines obtain status information from displays integrated into the machine and from general sensory information that is available due to their proximity to the operating machine. Therefore, there is reason to expect that real-time sensory information would be valuable to the farmer when remotely supervising an AAM through an automation interface. This chapter will provide an overview of recent research that has been conducted on the role of real-time sensory information to the task of remotely supervising an AAM
    corecore